Vitamin E Prevents Alzheimer's Amyloid beta-Peptide (1-42)-Induced Neuronal Protein Oxidation and Reactive Oxygen Species Production.
نویسندگان
چکیده
Amyloid beta-peptide (Abeta) is a 42-43 amino acid peptide known to accumulate in Alzheimer's disease (AD) brain. We previously reported that the neurotoxicity caused by Abeta is a result of its associated free radicals, which can play an important role in generating oxidative stress. Abeta(25-35)-associated oxidative stress-induced neuronal death in vitro is well established by many laboratories, including ours. However, the oxidative stress-induced by the full-length [Abeta(1-42)] peptide is not well investigated. The protective effect of antioxidant vitamin E in full-length peptide-induced oxidative stress also has not been reported. Here, we report that the increased protein oxidation, reactive oxygen species (ROS) formation, and neurotoxicity induced by Abeta(1-42) in primary rat embryonic hippocampal neuronal culture are prevented by the free radical scavenger and antioxidant vitamin E. To test the hypothesis that vitamin E's protective effect may be due to inhibition of fibril formation, electron microscopy studies were undertaken. Vitamin E does not inhibit Abeta(1-42) fibril formation, suggesting that the neuroprotection afforded by this molecule stems from other processes, most probably through the scavenging of Ab-associated free radicals. These results may have implications on the treatment of Alzheimer's disease.
منابع مشابه
The critical role of methionine 35 in Alzheimer's amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity.
Amyloid beta-peptide (1-42) [Abeta(1-42)] has been proposed to play a central role in the pathogenesis of Alzheimer's disease, a neurodegenerative disorder associated with cognitive decline and aging. AD brain is under extensive oxidative stress, and Abeta(1-42) has been shown to induce protein oxidation, lipid peroxidation, and reactive oxygen species formation in neurons and synaptosomes, all...
متن کاملThe critical role of methionine 35 in Alzheimer’s amyloid h-peptide (1–42)-induced oxidative stress and neurotoxicity
Amyloid beta-peptide (1–42) [Ah(1–42)] has been proposed to play a central role in the pathogenesis of Alzheimer’s disease, a neurodegenerative disorder associated with cognitive decline and aging. AD brain is under extensive oxidative stress, and Ah(1–42) has been shown to induce protein oxidation, lipid peroxidation, and reactive oxygen species formation in neurons and synaptosomes, all of wh...
متن کاملRole of glycine-33 and methionine-35 in Alzheimer's amyloid beta-peptide 1-42-associated oxidative stress and neurotoxicity.
Recent theoretical calculations predicted that Gly33 of one molecule of amyloid beta-peptide (1-42) (Abeta(1-42)) is attacked by a putative sulfur-based free radical of methionine residue 35 of an adjacent peptide. This would lead to a carbon-centered free radical on Gly33 that would immediately bind oxygen to form a peroxyl free radical. Such peroxyl free radicals could contribute to the repor...
متن کاملMethionine residue 35 is critical for the oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide 1-42.
Amyloid beta-peptide 1-42 [Abeta(1-42)] is central to the pathogenesis of Alzheimer's disease (AD), and the AD brain is under intense oxidative stress. Our laboratory combined these two aspects of AD into the Abeta-associated free radical oxidative stress model for neurodegeneration in AD brain. Abeta(1-42) caused protein oxidation, lipid peroxidation, reactive oxygen species formation, and cel...
متن کاملIn vitro and in vivo protein oxidation induced by Alzheimer's disease amyloid beta-peptide (1-42).
Amyloid β-peptide (Aβ) is thought by many researchers to be central to the pathogenesis of Alzheimer’s disease (AD) (reviewed in Ref. 1). In addition, oxidative stress, manifested by protein oxidation and lipid peroxidation, is apparent in AD brain.2,3 Our laboratory developed a comprehensive hypothesis for neurotoxicity in AD brain that unites these two observations and provides a testable fra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Alzheimer's disease : JAD
دوره 2 2 شماره
صفحات -
تاریخ انتشار 2000